Integrating laboratory creep compaction data with numerical fault models: A Bayesian framework
نویسندگان
چکیده
[1] We developed a robust Bayesian inversion scheme to plan and analyze laboratory creep compaction experiments. We chose a simple creep law that features the main parameters of interest when trying to identify rate-controlling mechanisms from experimental data. By integrating the chosen creep law or an approximation thereof, one can use all the data, either simultaneously or in overlapping subsets, thus making more complete use of the experiment data and propagating statistical variations in the data through to the final rate constants. Despite the nonlinearity of the problem, with this technique one can retrieve accurate estimates of both the stress exponent and the activation energy, even when the porosity time series data are noisy. Whereas adding observation points and/or experiments reduces the uncertainty on all parameters, enlarging the range of temperature or effective stress significantly reduces the covariance between stress exponent and activation energy. We apply this methodology to hydrothermal creep compaction data on quartz to obtain a quantitative, semiempirical law for fault zone compaction in the interseismic period. Incorporating this law into a simple direct rupture model, we find marginal distributions of the time to failure that are robust with respect to errors in the initial fault zone porosity.
منابع مشابه
Integrating Laboratory Compaction Data With Numerical Fault Models: a Bayesian Framework
When analyzing rock deformation experimental data, one deals with both uncertainty and complexity. Though each part of the problem might be simple, the relationships between them can form a complex system. This often leads to partial or only qualitative data analyses from the experimental rock mechanics community, which limits the impact of these studies in other communities (e.g., modelling). ...
متن کاملFault compaction and overpressured faults: results from a 3-D model of a ductile fault zone
S U M M A R Y A model of a ductile fault zone is incorporated into a forward 3-D earthquake model to better constrain fault-zone hydraulics. The conceptual framework of the model fault zone was chosen such that two distinct parts are recognized. The fault core, characterized by a relatively low permeability, is composed of a coseismic fault surface embedded in a visco-elastic volume that can cr...
متن کاملInterseismic deformation and creep along the central section of the North Anatolian Fault (Turkey): InSAR observations and implications for rateandstate friction properties
[1] We present high-resolution measurements of interseismic deformation along the central section of the North Anatolian Fault (NAF) in Turkey using interferometric synthetic aperture radar data from the Advanced Land Observing Satellite and Envisat missions. We generated maps of satellite line-of-sight velocity using five ascending Advanced Land Observing Satellite tracks and one descending En...
متن کاملDynamic Fault Weakening and Strengthening by Gouge Compaction and Dilatancy in a Fluid-Saturated Fault Zone
Triaxial experiments show that samples of fault gouge deform distinctly differently than those from the adjacent fault damage zone (e.g., Chester and Logan, 1986). Rock samples in the damage zone follow a characteristic elastic-brittle behavior, whereas fault gouge readily compacts and deforms in a more ductile manner. In order to explain the apparent weakness of large plate bounding faults suc...
متن کاملJoint Bayesian Stochastic Inversion of Well Logs and Seismic Data for Volumetric Uncertainty Analysis
Here in, an application of a new seismic inversion algorithm in one of Iran’s oilfields is described. Stochastic (geostatistical) seismic inversion, as a complementary method to deterministic inversion, is perceived as contribution combination of geostatistics and seismic inversion algorithm. This method integrates information from different data sources with different scales, as prior informat...
متن کامل